Welcome Guest [Log In] [Register]
Sky Dragon is up and running. We need people to sign up and add content. Introduce yourself at the General discussion forum. Speak up to welcome a few others, start a thread, or contribute to someone else's thread.
Viewing Single Post From: The giant space ship example

"You were correct to suppose a weaker lapse rate on the starship than on Earth or Mars; but it's weaker even than you had guessed."

So lapse rate for 1/10th gravity is 1 C per 1000 meters?
And so follows gravity exactly.
What factors would make it not, precisely follow gravity?
Or is that definitional, and any variation would called something else.

This ref http://daphne.palomar.edu/jthorngren/adiabatic_processes.htm
Defines dry adiabatic lapse rate as 10 C per 1000 meter on earth which is number
you using. It also says:
"Make sure you notice that we are talking about moving air (rising or subsiding), not still air. The change in temperature of still air (that is, air that is not rising or subsiding) follows the Environmental Lapse Rate, which varies considerably, but averages about 6.5 deg C/1000 meters (3.6 deg/1000 feet)."

The average lapse rate will determine height of the atmosphere, if it's 1 C per 1000 meter, the atmosphere will be higher than I thought it would be.
In general terms having this much pressure on such relatively low mass body will require a high atmosphere.

Having cooler atmosphere will lower it's height.

In general I would tend think this atmosphere would warmer on average than Mars [the top surface of ground temperature during daylight on Mars may reach around 25 C- but it's air temperature drops very significantly in first meter of elevation].
I would think this atmosphere would be warmer [percentage of bulk of air], but with low lapse rate coupled with inversion layers- related to any greenhouse gases- e.g. H2O- and tendency to have still air, my expectation could be wrong- the bulk of air could as cool or cooler than Mars.

It seems if it rains on this planet, it will require more generated heat- raining is disruptive: dumps heat when vapor liquifies into droplets, causing upper air to warm. But having humidity in the air should cause inversions layers, allowing cooler air above it.
Edited by gbaikie, Dec 4 2011, 07:55 PM.
Offline Profile Quote Post
The giant space ship example · Physical theory for climate