Welcome Guest [Log In] [Register]
Sky Dragon is up and running. We need people to sign up and add content. Introduce yourself at the General discussion forum. Speak up to welcome a few others, start a thread, or contribute to someone else's thread.
Viewing Single Post From: The giant space ship example

"Combining, the total thermal energy being emitted out to space is 364 * 1.8e13 = 6.58e15 Watts, or 658,000 GigaWatts!"

Hmm my guess was 100,000 1 GW nuclear reactors. The 1 GW refers to electrical power rather the total thermal energy generated [waste heat]. And since efficiency generally less than 50% I assume 1 GW nuclear plant would give 2 [or more] GW of heat.
So 200,000 GW. My guess, your calculation fairly close.

But before going on to calculate other factors.
Before humans are living on this planet, one could have very cold atmosphere and still have gaseous atmosphere.
Suppose we start with atmosphere which was 150 K [and surface 150 k]
And there was these nuclear reactors putting out 658,000 GigaWatts of heat.
How much power is needed to increase the atmosphere by 1 K if using these reactors
making 658,000 GigaWatts of heat?
Or long does it take to warm from the average temperature of 150 K to 151 K?

Btw: love the ability to edit. Too bad Judith doesn't have this function.
I am always finding errors, after clicking the post button.
Edited by gbaikie, Dec 4 2011, 08:59 PM.
Offline Profile Quote Post
The giant space ship example · Physical theory for climate