Welcome Guest [Log In] [Register]
Sky Dragon is up and running. We need people to sign up and add content. Introduce yourself at the General discussion forum. Speak up to welcome a few others, start a thread, or contribute to someone else's thread.
Viewing Single Post From: The giant space ship example
Chris Ho-Stuart
Member Avatar
Dec 5 2011, 06:33 AM
Now, it seems the most significant element is average atmosphere temperature- rather than ground temperature or surface air temperature.
And next second important element would significant air mass "bordering/closest" to vacuum of space. And this second element I have no clue how to quantify.
So if second important element is not significant or could reduced somehow, then isn't first element to main factor in determining heat loss from atmosphere?

As the example of the Nitrogen/Oxygen atmosphere shows, we are going to need some measure of how effectively the atmosphere blocks infrared radiation. I'll be getting to that soon. With a transparent atmosphere (as you get with a mix of only O2 and N2) the heat loss from the atmosphere is zero; all the loss is from the surface directly. The atmosphere doesn't make any difference in this case.

When there is a non-trivial atmospheric absorption (absorptivity is a function of frequency and temperature) its gets more difficult, and this is the guts of the original problem you have posed. Basically, we need a way to describe the absorptivity of the atmosphere. If the atmosphere is N2, O2 and CO2 all well mixed, then we'll need the concentration of CO2, and some absorptivity data for CO2.
Offline Profile Quote Post
The giant space ship example · Physical theory for climate